

Certificates of positivity and polynomial minimization in the multivariate Bernstein basis

SAGA Kick Off - November '08

Richard Leroy IRMAR - Université de Rennes 1

R. Leroy - Certificates of positivity and polynomial minimization

Motivation

Notations

R. Leroy — Certificates of positivity and polynomial minimization

Motivation

Notations

• $f \in \mathbb{R}[X] = \mathbb{R}[X_1, \dots, X_k]$ of degree d

Motivation

Notations

- $f \in \mathbb{R}[X] = \mathbb{R}[X_1, \dots, X_k]$ of degree d
- non degenerate simplex $V = \text{Conv}[V_0, \dots, V_k] \subset \mathbb{R}^k$

Motivation

Notations

- $f \in \mathbb{R}[X] = \mathbb{R}[X_1, \dots, X_k]$ of degree d
- non degenerate simplex $V = \operatorname{Conv} [V_0, \ldots, V_k] \subset \mathbb{R}^k$
- barycentric coordinates λ_i (i = 0, ..., k):
 - polynomials of degree 1

$$\sum \lambda_i = 1$$

•
$$x \in V \Leftrightarrow \forall i, \ \lambda_i(x) \ge 0$$

Motivation

Example : standard simplex

Motivation

Motivation

Questions

• Decide if f is positive on V (or not)

Motivation

- Decide if f is positive on V (or not)
- Obtain a simple proof

Motivation

- Decide if f is positive on V (or not)
- Obtain a simple proof
 - \hookrightarrow certificate of positivity

Motivation

- Decide if f is positive on V (or not)
- Obtain a simple proof
 - $\hookrightarrow \mathsf{certificate} \ \mathsf{of} \ \mathsf{positivity}$
- Compute the minimum of f over V (and localize the minimizers)

- 1 Multivariate Bernstein basis
- 2 Certificates of positivity
- 3 Polynomial minimization

1 Multivariate Bernstein basis

- 2 Certificates of positivity
- 3 Polynomial minimization

Bernstein polynomials

Notations

• multi-index
$$\alpha = (\alpha_0, \dots, \alpha_k) \in \mathbb{N}^{k+1}$$

$$|\alpha| = \alpha_0 + \dots + \alpha_k = d$$

• multinomial coefficient $\binom{d}{\alpha} = \frac{d!}{\alpha_0! \dots \alpha_{k}!}$

Bernstein polynomials

• multi-index
$$\alpha = (\alpha_0, \dots, \alpha_k) \in \mathbb{N}^{k+1}$$

$$|\alpha| = \alpha_0 + \dots + \alpha_k = d$$

• multinomial coefficient
$$\binom{d}{\alpha} = \frac{d!}{\alpha_0! \dots \alpha_k!}$$

Bernstein polynomials of degree d with respect to V

$$B^d_{\alpha} = \begin{pmatrix} d \\ \alpha \end{pmatrix} \lambda^{\alpha} = \begin{pmatrix} d \\ \alpha \end{pmatrix} \lambda_0^{\alpha_0} \dots \lambda_k^{\alpha_k}.$$

11

Bernstein polynomials

multi-index
$$\alpha = (\alpha_0, \dots, \alpha_k) \in \mathbb{N}^{k+1}$$

$$|\alpha| = \alpha_0 + \dots + \alpha_k = d$$

• multinomial coefficient
$$\binom{d}{\alpha} = \frac{d!}{\alpha_0! \dots \alpha_k!}$$

Bernstein polynomials of degree d with respect to V

$$B^d_{\alpha} = \begin{pmatrix} d \\ \alpha \end{pmatrix} \lambda^{\alpha} = \begin{pmatrix} d \\ \alpha \end{pmatrix} \lambda_0^{\alpha_0} \dots \lambda_k^{\alpha_k}.$$

11

Appear naturally in the expansion

$$1 = 1^{d} = (\lambda_{0} + \dots + \lambda_{k})^{d} = \sum_{|\alpha|=d} {d \choose \alpha} \lambda^{\alpha} = \sum_{|\alpha|=d} B_{\alpha}^{d}$$

R. Leroy — Certificates of positivity and polynomial minimization

 \blacksquare nonnegative on V

- nonnegative on V
- basis of $\mathbb{R}_{\leq d}[X]$

- nonnegative on V
- basis of $\mathbb{R}_{\leq d}[X]$

 $\hookrightarrow \mathsf{Bernstein}\ \mathsf{coefficients}:$

$$f = \sum_{|lpha|=d} b_{lpha}(f,d,V) B^d_{lpha}.$$

• b(f, d, V) : list of coefficients $b_{\alpha} = b_{\alpha}(f, d, V)$

Control net

Gréville grid : points
$$N_{\alpha} = \frac{\alpha_0 V_0 + \dots + \alpha_k V_k}{d}$$

Control net

Gréville grid : points
$$N_{\alpha} = \frac{\alpha_0 V_0 + \dots + \alpha_k V_k}{d}$$

Control net : points (N_{α}, b_{α})

Control net

Gréville grid : points
$$N_{\alpha} = \frac{\alpha_0 V_0 + \dots + \alpha_k V_k}{d}$$

Control net

R. Leroy - Certificates of positivity and polynomial minimization

Interpolation properties

Interpolation properties

Linear precision

If
$$d \leq 1$$
: $b_{\alpha} = f(N_{\alpha})$

Interpolation properties

Linear precision

$$\text{ If } d \leq 1 : b_{\alpha} = f\left(\textit{N}_{\alpha}\right) \\$$

Interpolation at vertices

$$b_{de_i} = f\left(V_i\right)$$

Interpolation properties

Linear precision

If
$$d\leq 1$$
 : $b_{lpha}=f\left(N_{lpha}
ight)$

Interpolation at vertices

$$b_{de_i} = f\left(V_i\right)$$

• What about the other coefficients when $d \ge 2$?

Interpolation properties

Linear precision

If
$$d \leq 1$$
 : $b_{lpha} = f(N_{lpha})$

Interpolation at vertices

$$b_{de_i} = f\left(V_i\right)$$

• What about the other coefficients when $d \ge 2$?

 \hookrightarrow bound on the gap between $f(N_{lpha})$ and b_{lpha}

Gap control net / discrete graph of f

Theorem (08')

The gap between the control net and the discrete graph of f is bounded by

$$\max_{\substack{|\gamma| = d-2\\ 0 \leq i < j \leq k}} \left| \underbrace{b_{\gamma+e_i+e_{j-1}} + b_{\gamma+e_{i-1}+e_j} - b_{\gamma+e_i+e_j} - b_{\gamma+e_{i-1}+e_{j-1}}}_{\text{second differences}} \right|$$

The bound is sharp (attained by a quadratic form).

1 Multivariate Bernstein basis

2 Certificates of positivity

3 Polynomial minimization

Certificates of positivity

Certificates of positivity

• Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$

Certificates of positivity

• Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$

Certificate of positivity :

Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)

Certificates of positivity

• Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$

Certificate of positivity :

Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)

Here :

Certificate of positivity in the Bernstein basis

If $b(f, d, \Delta) > 0$, then f > 0 on Δ .
Certificates of positivity

• Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$

Certificate of positivity :

Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)

Here :

Certificate of positivity in the Bernstein basis

If $b(f, d, \Delta) > 0$, then f > 0 on Δ .

■ Warning : The converse is false in general !

Certificates of positivity

• Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$

Certificate of positivity :

Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)

Here :

Certificate of positivity in the Bernstein basis

If $b(f, d, \Delta) > 0$, then f > 0 on Δ .

■ Warning : The converse is false in general!

•
$$f = 6x^2 - 6x + 2 > 0$$
 on [0, 1], but $b(f, 2, [0, 1]) = [2, -1, 2].$

Certificates of positivity By degree elevation By subdivision

Certificates of positivity by degree elevation

Idea : Express f in the Bernstein basis of degree $D \ge d$, with D getting bigger and bigger.

If D is big enough, then $b(f, d, \Delta) > 0$.

Theorem ('08)

$$D > rac{d(d-1)k(k+2)}{24m} \left\| \Delta^2 b(f,d,\Delta)
ight\|_\infty \Rightarrow b(f,D,\Delta) > 0.$$

2 Certificates of positivityBy degree elevationBy subdivision

R. Leroy - Certificates of positivity and polynomial minimization

Certificates of positivity by subdivision

The set

Idea : Keep the degree constant, and subdivide the simplex Δ .

Tool : successive standard triangulations of degree 2.

If the subdivision is refined enough, then on each subsimplex V^i , $b(f, d, V^i) > 0$.

Theorem ('08)

$$\text{If } 2^N > \frac{k(k+2)}{24\sqrt{m}} \sqrt{dk(k+1)(k+3)} \left\| \Delta^2 b(f,d,\Delta) \right\|_{\infty},$$

then, after N steps of subdivision, $b(f, D, V^i) > 0$ on each V^i .

Certificates of positivity by subdivision

Re

Certificates of positivity by subdivision

Advantages :

■ the process is adaptive to the geometry of *f*

Certificates of positivity by subdivision

Advantages :

• the process is adaptive to the geometry of f

Certificates of positivity by subdivision

- the process is adaptive to the geometry of *f*
- smaller size of certificates

Certificates of positivity by subdivision

- the process is adaptive to the geometry of *f*
- smaller size of certificates
- **better interpolation (ex :** $25x^2 + 16y^2 40xy 30x + 24y + 10$)

Certificates of positivity by subdivision

- the process is adaptive to the geometry of f
- smaller size of certificates
- **better interpolation (ex :** $25x^2 + 16y^2 40xy 30x + 24y + 10$)

Certificates of positivity by subdivision

The process stops :

Theorem ('08)

There exists an explicit (computable) $m_{k,d,\tau} > 0$ such that if f has degree $\leq d$ and the bitsize of its coefficients is bounded by τ , then

$$f > m_{k,d,\tau}$$
 on Δ .

- 1 Multivariate Bernstein basis
- 2 Certificates of positivity
- 3 Polynomial minimization

Enclosing property

Let *m* denote the minimum of *f* over the standard simplex Δ .

Goal : Enclose *m* with an arbitrary precision.

Enclosing property

If V is a simplex, and m_V the minimum of f over V, then :

$$m_V \in [s_V, t_V],$$

where $\begin{cases} s_V = \min b_{\alpha} = b_{\beta} \text{ for some } \beta \\ t_V = \min[f(N_{\beta}), \underbrace{b_{de_i}}_{=f(V_i)}, i = 0, \dots, k] \end{cases}$

Steps :

R. Leroy — Certificates of positivity and polynomial minimization

Algorithm

Steps :

• Subdivide :
$$\Delta = V^1 \cup \cdots \cup V^s$$
.

Algorithm

Steps :

- Subdivide : $\Delta = V^1 \cup \cdots \cup V^s$.
- Remove the simplices over which f is trivially too big

Algorithm

Re

Steps :

- Subdivide : $\Delta = V^1 \cup \cdots \cup V^s$.
- Remove the simplices over which f is trivially too big
- Loop until on each subsimplex V^i , we have :

$$t_{V^i}-s_{V^i}<\varepsilon,$$

where ε is the aimed precision.

Algorithm

Re

Steps :

- Subdivide : $\Delta = V^1 \cup \cdots \cup V^s$.
- Remove the simplices over which f is trivially too big
- Loop until on each subsimplex Vⁱ, we have :

$$t_{V^i}-s_{V^i}<\varepsilon,$$

where ε is the aimed precision.

Tool : Successive standard triangulations of degree 2.

We have a bound on the complexity :

Theorem ('08) If $2^{N} > \frac{k(k+2)}{24\sqrt{\varepsilon}} \sqrt{dk(k+1)(k+3)} \|\Delta^{2}b(f, d, \Delta)\|_{\infty}$, then at most *N* steps of subdivision are needed.

Algorithms

R. Leroy — Certificates of positivity and polynomial minimization

Conclusion

Algorithms

certified

Conclusion

Algorithms

certified

bound on the complexity

Conclusion

Algorithms

- certified
- bound on the complexity
- implemented (in Maple, Maxima)

Conclusion

Algorithms

- certified
- bound on the complexity
- implemented (in Maple, Maxima)

Future work

Conclusion

Algorithms

- certified
- bound on the complexity
- implemented (in Maple, Maxima)

Future work

 better complexity (as in the univariate case and the multivariate box case)

Conclusion

Re

Algorithms

- certified
- bound on the complexity
- implemented (in Maple, Maxima)

Future work

- better complexity (as in the univariate case and the multivariate box case)
- Sage ?

Conclusion

Re

Algorithms

- certified
- bound on the complexity
- implemented (in Maple, Maxima)

Future work

- better complexity (as in the univariate case and the multivariate box case)
- Mathemagix !

Thank you !

R. Leroy - Certificates of positivity and polynomial minimization

